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2.1

M o t i o n  i n  a  S t r a i g h t  L i n e

C H A P T E R  0 2

O B S E R V I N G  M O T I O N
People have been watching and recording things move for thousands of years. The motions of
the heavens are some of the oldest recorded observations we have. Later, a need to measure
the speed of advancing armies or athletes or ships required better ways of measuring distance
and time. Over the centuries measurements became more accurate and now form the basis of
modern physics. We can now measure distances and times to incredible accuracy.

Many types of motion are occurring around us all the time. Blood flow, moving bullets,
cricket balls, athletics, cars, stars, planets, neutrinos and weaving looms are some of the 
areas where motion is measured. Some need to be measured carefully, others not. A car
speedometer that is a few kilometres per hour over or under makes little difference but better
accuracy is needed when timing a 100 metre sprint or controlling the speed of videotape
through the heads of a VCR.

Sometimes the motion of objects doesn’t make sense. Can you make sense of these
questions?
• We live on a world that is round, yet we do not fall off. Many people used to believe

the world was flat. Some still do. What evidence is there that it is round?
• Before Copernicus, most people believed that the Earth was stationary and the Sun

moved around it. We now believe that the Earth is moving around the Sun but how
do we know this?

• The Earth moves in a circular orbit and never slows down. Most objects in the world
seem to travel in straight lines and slow down. Why is the Earth different?

The above three questions have several similarities. How many different things do they have
in common?

Physics developed over the centuries as people pondered on these questions and came
up with all sorts of different explanations. But people also found that knowing about the
motion of everyday objects became more and more important.

It helps with your problem solving if you are familiar with some common motions and
their measurements.

A c t i v i t y  2 . 1 S P E E D O M E T E R
Have a look at your family car’s speedometer.

1 What is the maximum speed that it can record?

2 Do you know what your car’s top speed is? If you don’t, where would you find
out? Assuming that it can’t go as fast as the maximum value on the speedo, why
do manufacturers use this sort in cars?

3 How many km/h are there per division?

4 The odometer (Greek hodos = ‘a way’) measures the total number of kilometres
travelled by the car from when it was new. What is the maximum number of 
kilometres your car can travel before the odometer returns to all zeros?
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Photo 2.1
A car speedometer.
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2.2

5 Does your odometer measure to the nearest kilometre or tenth of a kilometre?

6 What is the maximum distance your ‘trip meter’ will record?

7 Some unscrupulous people illegally ‘wind back’ the odometer. What is the 
purpose of this and how do they do it?

8 Does the odometer go backwards when your car is reversed?

9 Does the speedo of your car go lower than zero when reversed?

A c t i v i t y  2 . 2 S E W I N G  M A C H I N E
Look at a sewing machine. How can you change the speed of a sewing machine motor? 
Is it variable? Are all electric motors controlled in the same way?

A c t i v i t y  2 . 3 V I D E O  R E C O R D E R
If you have a VCR and can find the instruction manual, find out the tape speed on 
standard play. Should everyone in the class get the same result? Is the speed the same 
in videocameras? Are speed and image quality related?

A knowledge of physics enables us to analyse all types of motion. Without accurate
measurement and control, life would be difficult indeed.

D I S TA N C E  A N D  D I S P L A C E M E N T
From the earliest times, being able to measure distances, angles and time was important in
the daily lives of people. Often it was for religious reasons — worshipping sun gods; other
times it was an attempt to plot the motion of the stars — a primitive astronomy. But some-
times it had a more practical purpose. Measuring distance, for instance, was important in the
construction of houses, building canals and cultivating fields.

Plato told the story of how Posiedon (421 BC) inherited the island of Atlantis with its 
irrigated plain of 3000 by 2000 stades (a ‘stade’ is 185 metres, hence the word ‘stadium’).
Today, of course, we would be more likely to use metres or kilometres.

Whereas length is a measure of how long or wide an object is, we use the term distance
to say how far the object has moved. A person travelling from one city to another may have
moved a distance of 1200 km. In physics, we need to be able to measure not only distance
but also ‘displacement’.

Displacement is the change in position of an object in a given direction. You can
think of it as the position measured relative to the origin. It is given the symbol ‘s’.

In Figure 2.1, if you started at point X and walked 8 m east to point Z and then turned
around and walked 5 m west to point Y, you would have moved a distance of 13 m but would
only have a displacement of 3 m east. That is, your position would only have changed by 
3 m to the east. In symbols this could be written as s = 3 m E.

Displacement is called a vector quantity. That is, it involves both a number and a direc-
tion. Other vector quantities are velocity, acceleration and force. Quantities that do not
include a direction are called scalar quantities. Distance, speed, mass and time are all scalar
quantities. In the next chapter, vectors will be discussed in more detail.

When discussing vector quantities like displacement we use the compass points (N, E, W,
S) to define directions as we did above, or alternatively, we can use a positive sign for forward
motion or motion to the right and a negative sign for backward motion or motion to the left.

For example, in Figure 2.2 the displacement of C can be written as sC = +10 m; and the
displacement of A can be written as sA = –7 m.

Either way, you’ll need to be able to use both conventions. It’s up to you and it is also
up to you to define the positive and negative directions.
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X Y Z

Figure 2.2

–7 m start +10 m

A B C

Figure 2.1
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— Representat ion of  vector  quant i t ies
A vector quantity can be represented by a vector. A vector is an arrow. The length of the arrow
represents the magnitude of the vector quantity, and the direction of the arrow shows the
direction of the vector quantity. For example, the three vectors in Figure 2.3 represent cars
travelling at 30 km/h east, 60 km/h west and 10 km/h north respectively.

When vectors do not lie along the compass points (N, E, S, W), angles need to be specified.
Figure 2.4 shows how the direction is indicated.

Students often find it hard to work out the directions. You can think of diagram A in Figure
2.4 as saying: going east but rotated 30° to the north.

Example
In Figure 2.5, an orienteering competitor starts at point A and goes 2 km N, 4 km E and then
2 km S. What is the final displacement at point D?

Solution
The displacement at D is 4 km east (sD = 4 km E).

— Q u e s t i o n s
1 In Figure 2.5:

(a) What is the displacement of the competitor at point B? (sB = ?)
(b) What is the total distance travelled when at point D?
(c) What is the distance travelled when at point C?
(d) What is the displacement at point C? Remember to include the direction by

stating the value of the angle CAD.
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10 km/h N60 km/h W30 km/h E

Figure 2.3

E30°N (or N60°E)
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C
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Figure 2.4

Figure 2.5
For question 1.
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2.3

2 You watch your dog following a cat’s scent trail. He walks 50 m north, turns 
and walks 60 m east and then walks 50 m south. What is his displacement?

3 A toy train is running around a circular track of diameter 120 cm. What is its
distance travelled and its displacement after (a) one-half of a lap; (b) one full
lap; (c) two laps; (d) one-quarter of a lap?

S P E E D  A N D  V E L O C I T Y
Newspapers and magazines use the terms ‘speed’ and ‘velocity’ as if they mean the same
thing. They do — almost. When a newspaper report mentions a high-speed car chase we know
what is meant. But why do they also talk about hunting rifles being high-velocity?
Newspapers say high-velocity atomic particles but they also talk of a cyclone’s wind speed.
Newspapers mean the same thing by speed and velocity. Why do you think they refer to some
motions as speed and others as velocity?

In physics, speed and velocity are slightly different terms. Speed is a scalar quantity
whereas velocity is a vector quantity. If it takes 2 hours to travel the 120 kilometres from
Brisbane to Noosa then the average speed is 60 kilometres per hour. Speed is the rate at
which distance is covered. Remember, the word ‘rate’ is a clue that something is being 
divided by time. Speed is always measured in terms of a unit of distance divided by a unit of
time, such as metres per second.

This of course doesn’t mean the driver sat on 60 km h–1 all the way. Sometimes the car
would have gone at 100 km h–1 and at other times it would have been stationary. While the
car’s speedometer was reading 60 km h–1 then the car was actually travelling at that speed for
that moment. This is called its instantaneous speed.

When we talk of a car’s speed as being 60 km h–1 we have no idea about the direction it
is travelling. Speed is a scalar quantity.

Velocity is defined as speed in a particular direction, for example 60 km h–1 north.
Velocity is a vector quantity and the direction must be stated. In this book we represent a
vector by printing its symbol in bold italics.

Imagine a person running to catch a bus. Figure 2.6 shows him running north up Main
Street at 5 m s–1, turning east into Mary Street and continuing to run at 5 m s–1. Although he
was running at constant speed, his velocity changed because his direction changed.

Instantaneous velocity is similar to instantaneous speed except that a particular direction
must be stated.

As distance moved in a stated direction is called ‘displacement’,
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Average speed = total distance travelled
time taken

Instantaneous velocity = small distance travelled in a stated direction
time taken for this small distance

instantaneous velocity =
displacement
time taken

s metresv = — metres per second =
secondst

Mary St

M
ai

n 
St

Figure 2.6
Turning into Mary Street. 

A change of direction 
means a change in velocity.

N O V E L  C H A L L E N G E

Try out these ‘Fermi questions’:
A How many golf balls will 

fit in a suitcase?
B How many hairs are there 

on a human head?
C How quickly does human hair
grow (in kilometres per hour)?

D If all the people of the world
were crowded together, how 
much area would we cover?

E What is the relative cost of 
fuel (per kilometre) of 

rickshaws and cars?
F How far does a car travel 

before a one-molecule 
layer of rubber is worn 

off the tyres?

Ch02-Walding 4th  25/8/04  10:14 AM  Page 29



As with speed, we can use the term ‘average velocity’ to describe the motion of an object
such as a car.

where ∆ (delta, the Greek ‘D’) means ‘change in’, that is, ∆t means change in time, but usually
the deltas are omitted. The formula can be rearranged like this:

Ta b l e  2 . 1 C O M PA R I S O N  O F  S O M E  C O M M O N  S P E E D S

Example 1
The trip meter on a car’s speedo was set at zero and after a journey lasting half an hour the
reading was 35 km. What was the average speed?

Solution

Example 2
A person rides a bicycle 5 km east and then 5 km north (Figure 2.7). The trip takes 1.5 hours.
Find (a) the total distance travelled; (b) the average speed; (c) the displacement; 
(d) the average velocity.

Solution
(a) Total distance = 5 km + 5 km = 10 km.

(b) Average speed =
distance 

=
10 km  

= 6.7 km h–1.
time 1.5 h

(c) Displacement = √52 + 52 = 7 km in a NE direction (s = 7 km NE or 7 km N45°E).

(d) Average velocity =
displacement  

= 
7 km

= 4.7 km h–1 NE (N45°E).
time 1.5 h

30 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

Average velocity =
displacement 

or vav =
∆s

time taken ∆t

vav = s s = vav t t = s
t vav

MOVEMENT m/s km/h

Worm 0.005 0.01
Walking 1.4 5
Jogger 2.8 10
Cheetah 28 100
Sound in air 330 1200
Light 3 × 108 1 billion

Average speed =
distance

=
35 km  

= 70 km/h or 70 km h–1
time 0.5 h

5 km

5 km

s = 7 km

Figure 2.7

N O V E L  C H A L L E N G E

A lizard runs 30 m west, rests
and heads 40 m north where it
meets the base of a tree. 
It scampers 5 m straight up the
tree. What is the magnitude of
its displacement? How are you
going to indicate the angle?

N O V E L  C H A L L E N G E

The Greek symbol for ‘D’ is delta,
∆. In science, we use ∆ to
represent ‘difference’ because
this also starts with ‘D’. A delta is
a triangular piece of flood plain
where a river meets the sea, as
in the Nile delta.

Was the symbol ∆ called delta
because it looked like the delta
of a river, or was the flood plain
called a delta because it looked
like the Greek symbol ∆? The
Greeks got the word delta from
the inventors of the alphabet —
the Phoenicians — who used it
to mean ‘door’.
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2.4

Ta b l e  2 . 2

5 An archer can fire an arrow at 390 m/s. What time would an arrow take to hit a
target 100 m away?

6 The highest speed on land in a car is 1190.4 km/h recorded by Stan Barrett
(USA) in 1979 in his rocket-engined three-wheeled car at Edwards Airforce Base.
What time would it have taken him to cover the 1.6 km test distance?

7 A person rides a bicycle to a shop by travelling 300 m north along a straight 
road and then travels west for another 400 m. If the trip takes 3 minutes, find
(a) the average speed and (b) the average velocity.

8 A Ferrari Testarossa when driven by an experienced racing driver can cover 
400 m from a standing start in 14.2 s. If it crosses the 400 m line at a speed of
203 km/h, what is its average speed?

D I S P L A C E M E N T – T I M E  G R A P H S
It is often useful to show records of motion in the form of a graph. These can be in the form
of a distance–time graph or as a displacement–time graph. In the graph shown in Figure 2.8
the position of a quarter-horse is shown, as recorded at six different times.

Ta b l e  2 . 3  DISPLACEMENT AND TIME MEASUREMENTS FOR A QUARTER-HORSE

In drawing the graph, it is usual to show the time elapsed on the x-axis and the dis-
placement on the y-axis as in Figure 2.8.

Note that the six plotted points are the six observations of the quarter-horse. When we
draw a line between these points we are assuming that the motion was uniform. This is called
interpolation (Latin inter = ‘between’, polire = ‘polish’; that is, to polish-up your data by 
supplying in-between points). When a line is extended past the first or last data points, this
is called extrapolation (Latin extra = ‘beyond’).

31

DISPLACEMENT TIME VELOCITY
(a) 200 m 10 s
(b) 50 km 1.5 h
(c) 30 s 140 m/s
(d) 3 h 220 km/h
(e) 300 m 15 m/s
(f) 130 km 65 km/h

Photo 2.2
The Texas TI-83 graphing calculator

and ranger has become a popular
way of collecting and displaying

data on the motion of objects, 
particularly in real-time.

Time elapsed (s) 0.0 1.0 2.0 3.0 4.0 5.0
Displacement (m) 0.0 10.0 20.0 30.0 40.0 50.0
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Time (s)

Figure 2.8
Displacement–time graph

for quarter-horse.

— Q u e s t i o n s
4 To help you rearrange equations and substitute numbers, do the simple calculations

shown in Table 2.2. Do not write in this book.

N O V E L  C H A L L E N G E

Confirm or refute the following
statement: ‘When an object is

moved, its displacement can be
smaller than the distance

travelled, but the distance
travelled can never be smaller

than the displacement.’

M o t i o n  i n  a  S t r a i g h t  L i n e
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2.5

(b) When was the dog stationary?
(c) When was its displacement increasing?
(d) When was the dog moving with the greatest speed?

S L O P E  A N D  V E L O C I T Y
Figure 2.9 is the displacement–time graph of a sprinter who runs 100 m in 10 s, rests for 20 s
and then sprints back to the starting point in the next 30 s.

The sprinter’s average velocity in the first 10 seconds is calculated by dividing the
displacement by the time taken. This is the same as calculating the slope of the line. The
slope of any line is given by change in y divided by change in x (‘rise over run’):

From the above displacement–time graph, the slope is given by:

The slope of the line is constant for the first 10 seconds, indicating that the velocity was 
also constant.

From t = 30 s to t = 60 s the average velocity can be calculated: 

vav = 0 – 100  =  3.3 m s–1.
60 – 30

Note that when the slope of the line is positive the velocity is in the positive direction.
When the slope is negative the velocity is negative; this simply means that the direction of
motion has reversed.
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Time (s)

Slope =
∆y

=  
y2 – y1

∆x x2 – x1

vav = slope =
∆y 

=
change in position 

=
100 m – 0 m  

= 10 m s–1
∆x time taken 10 s – 0 s

Figure 2.9
Displacement–time graph 
of sprinter.

Time elapsed (s) 0 1 2 3 4 5 6 7 8 9
Displacement (m) 0 2 4 4 4 6 6 4 2 0

— Q u e s t i o n s
9 Table 2.4 records the motion of a dog chasing a ball. (a) Draw a displacement–time

graph of the motion and describe it in words.

Ta b l e  2 . 4
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2.6A C C E L E R AT I O N
The velocity of a car increases when it starts moving from rest and decreases when the brakes
are applied and it slows down. Cars can thus accelerate (speed up) or decelerate (slow down).
The rate at which the velocity changes is called its acceleration. Consider the measurements
of a car taking off from the traffic lights, shown in Table 2.5.

Ta b l e  2 . 5

The car’s velocity is changing by 2 m s–1 every second. Its acceleration is said to be
2 m s–1 per second or 2 m s–2. The formula for acceleration is then:

where v is the final velocity and u is the initial velocity.

33M o t i o n  i n  a  S t r a i g h t  L i n e

100

80

60

40

20

0

D
is

p
la

ce
m

en
t 

(m
)

0 10 20 30 40 50 60
Time (s)

Figure 2.10
Displacement–time graph 

of rollerskater.

TIME ELASPSED (s) DISPLACEMENT (m) VELOCITY (m s–1)

0 0 0
1 1 2
2 4 4
3 9 6
4 16 8
5 25 10

Acceleration =
change in velocity 

=
∆v

time taken ∆t

=
final velocity – initial velocity

time taken

a =
v – u

t

— Q u e s t i o n s
10 For the graph of a rollerskater shown in Figure 2.10:

(a) calculate his average velocity for each of the five sections of the graph;
(b) calculate his average velocity for the whole journey;
(c) calculate his average speed for the whole journey.

N O V E L  C H A L L E N G E

The 08.00 express from Cleveland
to Brisbane arrives at 9.00, and 

the 08.30 from Brisbane to
Cleveland arrives at 9.30. 

Assuming both trains travel at
constant speed, at what time
should they pass each other?
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— Q u e s t i o n s
11 Plot an s–t graph and a v–t graph of the data of a ball rolling down an incline,

listed in Table 2.6. Don’t write in this book.

Ta b l e  2 . 6

By inspection of the data, state the acceleration of the rolling ball.

Example
American experiments reveal that the beak of the red-headed woodpecker hits the bark of a
tree at an impact velocity of 5.8 m s–1 and comes to rest in 0.059 s. Calculate the deceler-
ation of the bird’s head.

Solution

The negative sign indicates that the bird slowed down.

— Q u e s t i o n s
12 Complete Table 2.7. This will give you practice at manipulating the equation for

acceleration. Don’t write in this book.

Ta b l e  2 . 7

34 N e w  C e n t u r y  S e n i o r  P h y s i c s : C o n c e p t s  i n  C o n t e x t

5

10

15

20

25

s 
(m

)

0 1 2 3 4 5

t (s)

2

4

6

8

10

v 
(m

/s
)

0 1 2 3 4 5

t (s)

2

4

6

8

10

a 
(m

/s
2 )

0 1 2 3 4 5

t (s)

Figure 2.11

TIME ELASPSED (s) DISPLACEMENT (m) VELOCITY (m s–1)

0 0 0
1 3 6
2 12 12
3 27 18
4 48 24
5 75 30

a = v – u = 0 – 5.8 = –98 m s–2 (–9.8 × 101 m s–2)
t 0.059

(a) 18 10 2.0
(b) 42 4 4.0
(c) 20 10 – 2.0
(d) 18 25 3.5
(e) –5 1.3 – 0.5

v (m s–1) u (m s–1) ∆v (m s–1) t (s) a (m s–1)

Note that the change of displacement is increasing for every second elapsed. In the 1st
second, the displacement changes by 1 m, whereas in the 2nd second the displacement
changes by 3 m. The above data are plotted on the three graphs shown in Figure 2.11. Graphs
of uniformly accelerated motion are related as shown in the figure.
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2.7

13 The highest road-tested acceleration reported for a standard production car is 
0 to 96.5 km/h (26.8 m s–1) in 3.98 s for a Ferrari F40 driven by Mark Hales of
Fast Lane Magazine in the UK on 9 February 1989. Calculate the acceleration 
of the car.

14 The highest speed by a rocket-engined wheeled land vehicle was 1046 km h–1

(290 m s–1) recorded by Gary Gabelich in The Blue Flame on the Bonneville 
Salt Flats in 1970. His acceleration was measured as 4.2 m s–2 in getting to this
speed from rest. How many seconds would he have taken to reach this speed?

15 The head of a rattlesnake can accelerate at 50 m s–2 when striking a victim. 
If a car could do as well, how long would it take for it to reach a speed of 
27 m s–1 (100 km h–1) from rest?

16 A muon (an elementary particle) enters an electric field with a speed of 
5.00 × 106 m s–1, whereupon the field causes it to decelerate at 1.25 × 1014 m s–2.
How much time elapses before it stops?

I N S TA N TA N E O U S  V E L O C I T Y
When you read a car’s speedo you are seeing the instantaneous speed of the car. If it reads
60 km h–1, then it means that at the current speed you would cover 60 km in 1 hour. But 
you could be accelerating and the speedo might be gradually changing from 50 km h–1 to 
100 km h–1. When it read 60 km h–1 this was its instantaneous speed. If a direction is also
specified, then you would be talking about its instantaneous velocity.

Consider the case of an accelerating car. In this case the velocity is getting faster as time
goes by so the s–t graph is a curve as shown in Figure 2.12.

To calculate the instantaneous velocity at 2.5 s in Figure 2.12(a), a tangent is drawn to
the curve at the 2.5 s mark. The tangent is a line that just touches the curve at that point.
The slope of the tangent can be calculated:
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Figure 2.12(a)
The instantaneous velocity at time 

t = 2.5 s is given by the slope 
of the tangent to the curve 

at that point. 30

20

10

1 2

Time (s)

Po
si

tio
n 

(m
)

3 4

Slope =
y2 – y1 =

20 – 0
= 8 m s–1

x2 – x1 3.5 – 1

N O V E L  C H A L L E N G E

Here’s an interesting theory that

could be investigated

experimentally. R. McNeill Alexander

from Leeds University, England,

measured the speed at which

animals switched from walking to

running. For humans, the speed is

about 8 km h–1. He developed a rule

which, stated mathematically, is: 

v2 = g dH, where v is the speed at

which an animal switches, dH is 

the distance from the hip to the 

ground, and g is the acceleration

due to gravity. His rule applies to

animals from insects to humans. Can

you confirm this rule by experiment?

1
2
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2.8

A more difficult case is shown in Figure 2.12(b). To calculate the instantaneous velocity 
at 2 seconds in Figure 2.12(b), a tangent to the curve has been drawn and the slope of the
tangent can be calculated:

— Q u e s t i o n
17 From Figure 2.12b: (a) Calculate the instantaneous velocity at 4 s. (b) Calculate

the average velocity over the whole 5 s. Do not draw in this book. Use your ruler. 

V E L O C I T Y- T I M E  G R A P H S
Graphs can also be used to show the changes in velocity of an object with time. The graph in
Figure 2.13 represents a car being accelerated from rest to 20 m s–1 in 10 s and being held at
that speed for 10 s before the driver slows down to a stop.

A straight line sloping upward indicates constant acceleration, whereas a straight line 
sloping down indicates deceleration or negative acceleration. A horizontal line indicates zero

acceleration, that is, constant velocity. As the formula for acceleration a = is equiva-

lent to then acceleration is equal to the slope of a v–t graph.

The displacement can be calculated by finding the area under the line. For instance, in
the case above, the car has travelled at an average speed of 10 m s–1 for the first 10 s. Hence
the displacement must be 10 m s–1 × 10 s = 100 m. The area under the line for the first 10 s
is (20 × 10)/2, that is, (base × height)/2, which equals 100 m also. The area under a v–t
graph equals displacement.

Example
Using the graph shown in Figure 2.13:

(a) Calculate the acceleration of the car at (i) 5 s, (ii) 15 s and (iii) 30 s.
(b) Calculate the displacement after 40 s.
(c) Calculate the average velocity.
(b) Sketch an acceleration–time graph.

Solution
(a) (i) The acceleration at 5 s is equal to the slope at 5 s:

(ii) Slope equals zero, therefore acceleration is zero.

(iii) Slope  = 0 – 20  =  –1 m s–2.
40 – 20

∆y
∆x

v – u
t
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Slope =
0 – -23 

= 4.4 m s–1
5.2

20

0

–20

10 20 30 40

Time (s)

Velocity (m/s) Figure 2.13

a = slope =  20 – 0 = 2 m s–2
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)
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Figure 2.12(b)

N O V E L  C H A L L E N G E

You have learnt that the rate of

change of position with respect to

time is velocity, and the rate of

change of velocity is acceleration.

Did you know that the rate of

change of acceleration is known as

jerk (symbol j)? Jerk is important

when evaluating the destructive

effect of motion on a mechanism,

or the discomfort caused to 

passengers in a vehicle. The 

movement of delicate instruments

needs to be kept within specified

limits of jerk as well as 

acceleration to avoid damage. 

When designing a train the 

engineers will typically be required

to keep the jerk less than 2 m s–3

for passenger comfort. In the

aerospace industry they even have

such a thing as a jerkmeter — an

instrument for measuring jerk. 

In the case of the Hubble space

telescope, the engineers specified

limits on the magnitude of the

rate of change of jerk. There is no

universally accepted name for this

fourth derivative. 

Is the slope of, or area under, an

a–t graph related to jerk? Does 

the slope of, or area under, a

jerk–time graph mean anything?
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(b) Total area =
20 × 10 

+ 20 × 10 +
20 × 20 

= 500 m (or 5 × 102 m).
2 2

(c) Average velocity = displacement ÷ time:

(d) See Figure 2.14.

For cases where the velocity becomes negative, the area beneath the x-axis is also 
negative and this must be taken into account when calculating displacement.

For example, imagine the motion of a bungee jumper, jumping off a tower (Figure 2.15).

The displacement after 50 s is + = 50 m. The distance travelled, how-

ever, is not a vector quantity and the area underneath the x-axis is not considered to be
negative. The distance travelled is 250 m (150 m down plus 100 m back up).

— Q u e s t i o n s
18 For the motion of the bungee jumper shown in Figure 2.15 above:

(a) calculate the displacement and distance travelled after 40 s;
(b) calculate the acceleration at 10 s, 30 s and 45 s;
(c) sketch an acceleration–time graph.
(d) When was he stationary?
(e) When was his acceleration constant but not zero?
(f) When was his velocity constant but not zero?

19 The graph shown in Figure 2.16 illustrates the motion of a skateboard rider.
(a) Calculate his displacement after 1 minute.
(b) Calculate how far he travelled in the minute.

20 × –10
2

30 × 10
2
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vav = s = 500 = 12.5 m s–1 (or 10 m s–1 to one significant figure)
t 40

2
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Time (s)

Acceleration (m/s2)

–1

Figure 2.14
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Figure 2.15
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Figure 2.16
For question 19.
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2.9

(c) At what stage was the magnitude of his acceleration the greatest?
(d) When was he stationary?
(e) When was his acceleration negative and constant?
(f) When was his velocity constant but not zero?

20 Olympic equestrian ‘Three-day eventing’ is held over 4 days. The first 2 days 
consist of dressage while the 4th day is for show-jumping. The 3rd day is the
speed and endurance section. At the 1996 Atlanta Olympics, the gold medallist
achieved these results for Day 3:
Stage 1 (The Trot) was at 13 km h–1 for 10 minutes followed by Stage 2 (The Fast
Steeplechase), which took 5 minutes at 41 km h–1. Stage 3 was another trot the
same as Stage 1. Before Stage 4 there was a compulsory 10 minute rest. Stage 4
was a testing 14-minute cross-country gallop at 34 km h–1.
(a) Draw a v–t graph of the motion.
(b) Calculate the total distance travelled in this event.

E Q U AT I O N S  O F  M O T I O N
The equations used so far can be combined to provide other useful ways of calculating and
describing the motion of objects.

In real life we encounter several main kinds of motion:
• Constant velocity (zero acceleration).
• Regularly changing velocity (constant acceleration).

C a s e  1 : C o n s t a n t  v e l o c i t y
The simplest kind of motion we can study is that in which the object moves with constant
velocity and hence zero acceleration. The graphs for this type of motion are illustrated in
Figure 2.17. Some examples drawn from everyday life are:
• a car being driven at 60 km h–1

• ball bearings being rolled on a very smooth horizontal surface
• a person jogging
• water flowing in a pipe.
Accelerated motion is also easy to find. Examples are:
• objects falling freely under gravity
• a car moving away from the traffic lights
• an aircraft being catapulted by a steam catapult from an aircraft carrier.
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Figure 2.17
Motion graphs showing corresponding
displacement–time, velocity–time 
and acceleration–time relations 
for situations of constant velocity 
and constant acceleration.
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C a s e  2 : C o n s t a n t  ( u n i f o r m )  a c c e l e r a t i o n
Graphs representing this type of motion are also shown in Figure 2.17. Objects falling freely
under gravity are the most common examples of this.

Another case of constant acceleration is for an object slowing down (decelerating or
negative acceleration). Figure 2.18 shows graphs of this motion.

The quantities displacement, time, velocity and acceleration are all related to each other.
In this book the symbols shown in Table 2.8 will be used.

Ta b l e  2 . 8

Development of formulas

1 Acceleration =
final velocity – initial velocity

:
time

2 Average velocity = and also equals

3 If we substitute equation (1) into (2) we get:

4 From equation (1) we get t = v – u. Substituting this into equation (2), we get:
a

Note: these formulas only apply when the acceleration is constant and the motion is in a
straight line. Velocity, acceleration and displacement are vector quantities and therefore may
be positive or negative.

We can finally summarise the equations of motion as listed in Table 2.9.

u + v
2

s
t
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s

t0

v

t0

a

t

0

Figure 2.18

N O V E L  C H A L L E N G E

A car travels from A to B at an
average speed of 100 km/h and

returns at 60 km/h. 
What is the average speed for 

the journey?

Displacement s metres m
Initial velocity u metres per second m s–1

Final velocity v metres per second m s–1

Acceleration a metres per second per second m s–2

Time (elapsed) t second s

QUANTITY QUANTITY SYMBOL UNIT UNIT SYMBOL

a = v – u or v = u + at (1)
t

u + v
=

s
or s =

(u + v)t
(2)

2 t 2

s = (u + (u + at))t or s = ut + 1 at2

2 2 (3)

s = u + v × v – u or 2as = (u + v)(v – u)
2 a

2as = v2 – u2

v2 = u2 + 2as (4)
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Example 1
A car starts from rest and reaches a velocity of 60 km h–1 (16.67 m s–1) in 8 seconds.
Assuming the acceleration to be constant, calculate (a) the acceleration and (b) the 
displacement in this time interval.

Solution
Data: u = 0, v = 16.67 m s–1, t = 8 s, a = ?, s = ?

Example 2
A train starting from rest travels 30 m in 6 s. Find (a) its acceleration and (b) its velocity
after the 6 s.

Solution
Data: u = 0, s = 30 m, t = 6 s, a = ?, v = ?

— Q u e s t i o n s
21 Table 2.10 will give you practice in selecting equations of motion and substituting

values into them. Complete the table but do not write in this book.
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v = constant a = constant

vav = s vav = v + u
t 2

s = vt v = u + at

s = ut + 1 at2

2

v 2 = u 2 + 2as

s = (u + v)t
2

MOTION WITH UNIFORM VELOCITY MOTION WITH UNIFORM ACCELERATION

(a) a = v – u = 16.67 – 0 = 2.08 m s–2.
t 8

(b) s = ut + 1 at2 = 0 + 1 × 2.08 × 82 = 66.6 m.
2 2

(a) s = ut + 1 at2

2

30 = 0 + 1 a62

2

30 = 18a

a = 1.67 m s–2.

(b) v = u + at

= 0 + 1.67 × 6

= 10 m s–1.

N O V E L  C H A L L E N G E

A column of troops 3 km long 
is marching along a road. An
officer rides from the rear to the
head of the column and back
once, and he reaches the rear of
the column just as an advance
of 4 km has been made from
where he first left. 
How far did he ride?

N O V E L  C H A L L E N G E

A man goes from A to B at
30 km/h.
How fast must he return to 
average 60 km/h for the 
whole trip?

Ta b l e  2 . 9 S U M M A R Y  O F  F O R M U L A S
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2.10

Ta b l e  2 . 1 0

22 A cyclist starts from rest and attains a velocity of 21 m s–1 in 3.5 seconds.
Calculate (a) the acceleration, assumed constant; (b) the displacement.

23 A bus travelling in a straight line accelerates from 60 km h–1 to 100 km h–1 in 
1 minute. Calculate the acceleration in m s–2.

24 The click beetle (Athous haemorrhoidalis) experiences an acceleration of 24 000
m s–2 over a distance of 5 mm when it jack-knifes into the air to avoid predators.
For what time duration does this acceleration occur?

A C C E L E R AT I O N  D U E  T O  G R AV I T Y
One of the most common examples of motion in a straight line with uniform acceleration is
that of an object that falls freely due to gravity. Until Galileo (1564–1642), people thought
that heavy objects fell faster than light objects. They saw no need for experiments that may
have confirmed or refuted these beliefs. They relied on the theories of Aristotle, who believed
that objects fell at speeds that depended on their weight. Galileo performed some of the 
earliest experiments, which showed that both heavy and light objects in the absence of air
and other resistance fell with constant acceleration. Thus, two objects of different masses,
dropped from the same height at the same time, should strike the ground simultaneously.

Motion due to gravity can take two main forms. The first is vertical motion, where the
object moves in one dimension only, that is, up and down. The second is projectile motion,
where the object moves horizontally as well as vertically, for example a stone thrown off 
a cliff. Only vertical motion will be dealt with in this chapter. Projectile motion will be
discussed in Chapter 5.

Ty p e s  o f  f r e e - f a l l  m o t i o n
Free-fall motion can be grouped into two classes:
1 The object is being dropped or thrown down.
2 The object is being thrown upward.

Positive and negative convention When dealing with calculations involving acceleration
due to gravity we need to assign a positive and negative direction of motion. In this chapter
we will use the convention in which up is positive. Throughout the world, this is the most
common. It is a matter of your choice, however, but you may find it simplest to stay with the
one convention.

Acceleration due to gravity is constant at 10 m s–2 in the negative direction (down),
hence a = –10 m s–2. This means that an object will increase its velocity in the negative direc-
tion by 10 m s–1 every second, or by 10 metres per second per second. Students often think
that a negative acceleration means deceleration or slowing down but this is not always so. If
an object is moving in the negative direction (down) and has negative acceleration then it
will get faster in that negative direction. If it is moving in the positive direction (upward)
and has a negative acceleration then it is slowing down in that positive direction.

41M o t i o n  i n  a  S t r a i g h t  L i n e

(a) 0 2.5 3
(b) 100 0 2.4
(c) 10 25 2
(d) 300 9 1.5
(e) 40 2 4
(f) 10 5 2.5
(g) 160 50 8

QUESTION s (m) u (m s–1) v  (m s–1) a (m s–1) t (s)

N O V E L  C H A L L E N G E

A boy is carried up an escalator 
in 1 minute. He can walk up a

stationary escalator in 3 minutes.
How long will it take him to walk 

up a moving escalator?

Seconds 1   4 1   2 3   4 1

30°

1    ft   2
2 ft

8 ft

18 ft

11   4 11   2

1    ft   24

1    ft   212

Figure 2.19
Galileo’s data from his inclined

plane experiments.

projectile
motion

vertical
motion

Figure 2.20
Vertical and projectile motion.
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C a s e  1 : D r o p p e d  o r  t h r o w n  d o w n
Most typically, these situations involve dropping a rock off a cliff or throwing something 
vertically downward. In both cases the velocity increases. The only difference is the initial
velocity. When dropped, the initial velocity is zero but when thrown down the velocity begins
at some negative value. Either way, the velocity increases in the negative direction.

Example 1
A spanner is dropped from a sixth-floor window and takes 2.2 s to hit the ground. Calculate
(a) the height from which it was dropped and (b) its impact velocity.

Solution
Take the downward direction as negative.
Data: u = 0 m s–1; a = –10 m s–2; t = 2.2 s; s = ?; v = ?

Example 2
The Zero Gravity Research Facility at the NASA Research Centre includes a 150 m drop tower.
This is an evacuated vertical tower through which a 1 m diameter sphere can be dropped. If
this sphere is projected downward at an initial speed of 5 m s–1, how long would it take to
reach the bottom?

Solution
Data: s = –150 m; u = –5 m s–1; a = –10 m s–1; t = ?

Hence t = –6 s or t = +5 s. The answer must be 5 s as the negative time is not meaningful
here.

Note: in cases where the quadratic equation doesn’t factorise simply as shown above, the 
quadratic formula will be needed:

Without the quadratic formula you would first need to calculate v.
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(a) s = ut + at2

= 0 + × –10 × 2.22

= –24.2 m

(b) v = u + at

= 0 + –10 × 2.2

= –22 m s–1

1
2

1
2

s = ut + 1 at2
2

–150 = –5 × t + 1 × –10 × t2
2

5t2 + 5t – 150 = 0

t2 + t – 30 = 0

(t – 5) (t + 6) = 0

Quadratic formula: x  = –b ± √b2 – 4ac
2a

N O V E L  C H A L L E N G E

If you put a row of coins on a
1 metre ruler that has one end
on the ground and let the other
end fall, which coins will stay
on the ruler and which ones will
be left behind?

P H Y S I C S  FA C T
T H E  P O W E R  O F  M I N U S

(a) In 1962, the Mariner I 
mission launched towards
Venus but the rocket 
separated from the boosters
too soon and plunged into
the ocean 4 minutes after
take-off. Some klutz left a
negative (–) sign out of the
computer program.

(b) The old equation for the
energy of a photon was 
1/2 mv2 = hf. Einstein
added –W and got a Nobel
Prize.
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Example 3
A person aboard a balloon moving downward at 30 m s–1 drops a sandbag at an elevation of
500 m. (a) What time will it take for the sandbag to hit the ground? (b) What will be the
speed of the bag on impact?

Solution
Data: s = –500 m; u = –30 m s–1; a = –10 m s–2; t = ?

The negative time has no real meaning in this case, so the answer is 7.4 s.

Remember, the magnitude of the acceleration due to gravity (g) is about 9.8 m s–2. This
means that an object falling freely under gravity increases its speed by about 10 m s–1 every
second. It is given the negative sign because we have adopted the convention that upward
is positive and downward is negative.

Activity 2.4 VERTICAL MOTION ON THE SPREADSHEET
If you have access to a computer and are familiar with spreadsheeting, set up a spreadsheet
with the following headings (Table 2.11):

Ta b l e  2 . 1 1 S P R E A D S H E E T

1 The formula for cell B2 would be = (0.5 * 9.8*A2*A2) for example.

2 Extend Column A to 20 seconds and compute the value for all cells.

3 Use the graph commands to draw s–t and v–t graphs. Are they what you would
expect?

4 Discuss your output.
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(a) s = ut + 1 at2

2

–500 = –30t + 1 × –10 × t2

2

t2 + 6t – 100 = 0

t = –b ± √b2 – 4ac = –6 ± √62 – 4 × 1 × –100
2a 2 × 1

= –6 ± 20.9

2

= –13.4 s or +7.4 s

(b) v = u + at
= –30 + –10 × 7.4
= –30 + –74
= –104 m s–1

1 t (s) s (m) v (m s–1)
2 0 0 0
3 1
4 2

A B C

N O V E L  C H A L L E N G E

A flea (Pulex irritans) can 
jump about 4 m high. If the

flea was a big as a person, how 
high would it be able to jump

(proportionally)?
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C a s e  2 : T h r o w i n g  a n  o b j e c t  u p w a r d
When a ball is thrown vertically upward, it starts at a high initial velocity in the positive
direction, gradually slows to a halt at the top of its flight and gradually increases velocity in
the negative direction until it returns to the ground.

Figure 2.21 shows the flight of the ball; although its downward path is exactly the same
as the upward path, it is drawn slightly to the right for clarity.
Note: it can be shown that:
• velocity equals zero at the top of flight
• time of flight up equals time down
• acceleration is constant even at the top of flight when velocity is zero
• initial speed equals final speed
• final velocity equals the negative of the initial velocity
• air resistance is negligible and can be neglected.

Example
A ball is thrown vertically upward at 20 m s–1. Ignoring air resistance and taking g = –10 m s–2,
calculate (a) how high it goes; (b) the time taken to reach this height; (c) the time taken
to reach the ground from the highest point; (d) the final velocity; (e) time of flight.

Solution
Data: Taking down as negative: u = +20 m s–1, a = –10 m s–2, s = 0 m.
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Figure 2.21
Trajectory of an object thrown
vertically.

a = a = 

u =  +20 m s-1 v = 

v = 0
a = –10 m s-2

t  = 1
2

ttotal

top of flight

–10 m s-2–10 m s-2

–20 m s-2

(a) At the top of flight v = 0 m s–1:
v2 = u2 + 2as
0 = (+20)2 + 2 × –10 × s

20s = 400
s = 20 m (i.e. 20 m up in the air).

(b) v = u + at
0 = +20 + –10t
t = 2 s

(c) The ground is 20 m in the negative direction from the top of flight. 
Hence s = –20 m:

s = ut + 1 at2
2

–20 = 0 + – 5t2

t = 2 s
(d) v = u + at

= 0 + –10 × 2
= –20 m s–1

(e) Time up = 2 s; time down = 2 s. Hence total time of flight equals 4 s. Using the
equations of motion it can be shown that when the displacement is zero, the 
time for this to occur is zero seconds (the start) and 4 seconds (the finish):

s = ut + 1 at2
2

0 = +20t + 1 × –10t2
2

5t2 = 20t
t = 4 s
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2.11

— Q u e s t i o n s
25 A rock is dropped off a cliff and it takes 4 s to reach the base below. How high is

the cliff?
26 A pot-plant falls 25 m from rest to the ground below.

(a) What is its impact velocity?
(b) What time did it take to fall?

27 A rock is launched vertically upward from the ground at a starting speed of 35 m s–1.
(a) What is the maximum height reached?
(b) What time does it take to reach this maximum height?
(c) What time does it take to fall back to the ground again?

28 A person in a balloon moving vertically upward at a constant speed of 4.9 m s–1

drops a sandbag at an elevation of 98 m.
(a) What time will it take until the sandbag hits the ground?
(b) What will be the velocity of the sandbag on impact?

29 A startled armadillo leaps upward and rises 54.4 cm in 0.20 s and keeps rising.
(a) What was its initial speed? (b) What is its speed at this height? 
(c) How much higher does it go?

G R A P H S  O F  F R E E - FA L L  M O T I O N
The two most common types of free-fall motion mentioned in the previous section can be
examined graphically. Case 1 is that of an object dropped off a cliff. Figure 2.22 shows the
relationship between a velocity–time graph (b) and its corresponding acceleration–time
graph (a) for this type of free-fall motion. The downward direction is negative.
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Figure 2.22
(a) An acceleration–time graph; 

(b) a velocity–time graph. 
(The shaded area indicates the

displacement.) -2
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2.12

— Q u e s t i o n s
30 What does the slope of the line in the v–t graph of Case 1 (Figure 2.22) represent?
31 Which one of the graphs in Figure 2.24 is the displacement–time graph of the

rock’s motion in Case 2 (Figure 2.23)?

32 Draw a displacement–time graph of the motion of the ball as described in Case 1
(Figure 2.22).

M E A S U R I N G  M O T I O N
Motion of an object can be recorded by using a ticker timer as shown in Photo 2.3. It has
been specifically designed for physics experiments and has little other use outside the physics
laboratory. It consists of a pointed hammer, which vibrates up and down 50 times per second.
When a paper tape is pulled through the timer, a piece of carbon paper allows an imprint of
the hammer to be made on the paper. The distance between successive dots can be used to
calculate the velocity of the moving object as the time interval is a constant of a second
(0.02 second).

Consider a section of tape as shown in Figure 2.25. Table 2.12 lists the data from the tape.

Ta b l e  2 . 1 2

1
50
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+

–

0

down

up

+10

–10

0

maximum
height

v (m s–1)

t (s)

a (m s–2)

t (s)

area = displacement

Figure 2.23

Figure 2.24

+

–

0

s (m)

t (s)

+
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0

s (m)

t (s)

+
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0

s (m)

t (s)

+

–

0

s (m)

t (s)

A B C D

Photo 2.3
A ticker timer.

A B C D E F G H

direction being pulled

Figure 2.25
A segment of ticker timer tape.

t (seconds) 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
s (cm) 0 0.3 1.1 2.6 4.6 7.1 10.3 14.0
v (cm/s) 0 27.5 57.5 87.5 112.5 142.5 172.5 –

DOT A B C D E F G H

Case 2 is that of an object thrown upward into the air and allowed to return to its starting
place. Figure 2.23 shows the graphs of motion of a ball thrown in this manner. Note that the
acceleration is constant, even at the top of flight when the ball is stationary. Again, down is
negative.
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The average velocity can be determined by dividing the total displacement (14.0 cm) by
the time elapsed (0.14 s) to give 100 cm s–1. The instantaneous velocity at each dot can be
calculated by measuring the distance travelled between dots either side of the one being con-
sidered. For example, to calculate the velocity at dot D, the distance between dots C and E is
measured (3.5 cm — see Figure 2.26) and this is divided by the time interval (2 × 0.02 s).
The velocity at D is thus 87.5 cm s–1. The velocity of the other dots can also be calculated.

If acceleration is constant, a graph of velocity vs time should be linear and the slope of
this line will equal the acceleration.

To calculate the acceleration at a point, the velocity at the dot before this point and at
the dot after the point should be determined. The difference (v – u), when divided by the
time elapsed, will equal the acceleration.

For example, the acceleration at point D can be calculated by subtracting the velocity at
C from the velocity at E and dividing by 0.04 seconds: vC = 57.5 cm s–1, vE = 112.5 cm s–1,

hence ∆v = vE – vC = 55 cm s–1. The result: aD = = = 1375 cm s–2 is the acceler-

ation at D. The acceleration at E likewise is 1375 cm s–2. You should check this for yourself.

— Q u e s t i o n s
33 The following questions refer to the section of tape described above. 

(Figure 2.26)
(a) Plot the displacement vs time graph of the data above.
(b) Calculate the slope of the graph at points C and F. How do these slopes 

compare with the calculated velocity at these points?
(c) Plot the velocity vs time graph of the above data.
(d) Calculate the area under the line to point G. How does it compare with the

displacement at G (10.3 cm)?
(e) Calculate the slope of the velocity vs time graph. How does it compare with

the calculated acceleration (1375 cm s–2)?
34 The following questions refer to the ticker tape shown in Figure 2.27.

(a) Draw up a data table similar to Table 2.10 and measure the displacements
using your ruler. Enter the displacements in your data table. Do not write in
this book.

(b) Plot a displacement–time graph.
(c) Calculate the slope of the tangent at point E.
(d) Calculate the velocity at each dot and add to the data table.
(e) How does the velocity at E compare with the slope at E on the s–t graph?
(f) Plot a velocity–time graph and draw a line of best fit.
(g) Calculate the slope of the line.
(h) Calculate the acceleration at points B, C, D and E and add these to the data table.
(i) How does this compare with the slope of the v–t graph?
(j) Calculate the displacement at point F by measuring the area under the v–t

graph. How does it compare with the actual displacement at F as measured
on the tape?

55
0.04

∆v
t
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B C D E F

sFigure 2.26
Tape.

Figure 2.27
For question 34. A B C D E F G
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2.13
E L E C T R O N I C  R E C O R D I N G  A N D  C O M P U T E R

I N T E R FA C I N G
There are several devices that enable motion to be recorded electronically. Data-loggers are
used extensively in research and industry to monitor the performance of various devices under
test. The data-logging system comes with a package including an interface system and 
various sensors to pick up data from the environment such as motion, temperature, voltage,
sound and light. The sensor converts physical or chemical changes into electrical signals;
these analog signals are carried to the interface system where the signals are digitised. Such 
digital signals can be analysed and displayed on the computer monitor and calculations can
be performed. The graphical display function that accompanies data-logging programs trans-
forms data into graphs, which help show trends and anomalies.

Data-loggers are used for measuring not only motion but also an enormous range of other
data. You will have heard of the heart monitors in hospitals and ‘black box’ flight recorders in
planes. But they are also used for purposes as diverse as designing and producing torpedos,
counting biscuits on a production line, measuring causes of stress on individual soldiers in
combat situations, and monitoring the drying of paint and curing in industrial ovens. Data-
logging equipment is in use at smelters, refineries, tailings dams, mines, landfills, construc-
tion sites, manufacturing and processing plants, and industrial and hazardous waste sites; and
meteorological conditions can be monitored to yield data for determining air stability or for
use in air quality and dispersion modelling.

A c t i v i t y  2 . 5  D ATA - L O G G E R  I N  M O T O R S P O R T
Try the following as a good stimulus response task, or it could be the start of a
non-experimental investigation.

R a c i n g  c a r s
An interesting use of data-logging is in the racing car industry. Car manufacturers need to run
their cars at high speeds for predetermined times as part of their endurance testing program,
so they are packed with temperature and pressure sensors that feed data into computers.

The success of a racing car depends on hundreds of components working together at peak
performance under the most extreme conditions. Components such as displacement sensors
are designed to control and monitor a growing number of vital functions on racing cars and
supply information to engineers, who can then help trim precious seconds off the car’s lap
times. Although most categories of motor racing do not allow the performance of the suspen-
sion to be modified during a race, the use of computerised data-logging in testing and prac-
tice allows race engineers to tune the suspension to match the particular conditions and type
of circuit.

Monitoring the movement of the suspension with displacement sensors allows electrical
signals to feed back to the logging/telemetry system and then display a graphical represen-
tation of the car’s performance around a track. Using the data, engineers can easily recognise
areas where improvements can be made, and fine-tune the car by adjusting ride heights and
stiffness to suit a particular track and driver. Movement of the suspension can usually be
sensed by a linear displacement sensor, but some need rotary sensors.

Throttle controls have a rotary motion, so a rotary displacement transducer (sensor) can
be attached to the linkage. The position of the throttle mechanism is usually in a very 
hostile environment such as the top of the engine or underneath air intake ducts, so either
device must be extremely rugged and able to withstand high levels of shock, vibration and
high temperatures.
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Photo 2.4
Formula One racing cars have a
huge number of transducers being
monitored by data-loggers to give
them a winning edge. Shown here is
world champion Michael Schumacher
in his Ferrari F2002, winning the
French Grand Prix.
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Special ‘paddles’ on the driver’s steering wheel electronically control the clutch actuating
mechanism on today’s high-performance racing cars, overcoming the need for the driver to
use the feet to engage or disengage the clutch. This arrangement allows faster up-changing
and down-changing of the gears during acceleration and braking.

When it comes to braking, recent developments in GT and Formula One brake caliper
design have enabled systems to be fitted to monitor the wear of the brake pads and discs 
during a race. Advising the driver to back off by one second a lap can make a significant
difference to brake wear. The movement of the brake caliper piston is sensed by a very small
sensor embedded in the caliper body, which has been specially designed to withstand
extremes of shock and vibration from the track as well as the high temperatures from the
brake discs. The back of the brake pads can reach temperatures as high as 400°C, while
the caliper body can reach 150–200°C. On Formula One cars up to eight sensors per car are
fitted. The signals from the sensor are fed to the car’s data-acquisition system and can tell
race engineers the condition of the brake pad and disc wear characteristics.

Question: As a work experience student you have been asked to prepare a leaflet for some Year
8 students who will be visiting the racing car development laboratories of the Ford Motor
Company. In 200 words what would you say?

— Q u e s t i o n s
35 A car moving at 30 m s–1 decelerates at a uniform rate of 1.5 m s–2. How many

seconds will it take to stop and how far will it travel in this time?
36 Analysis of traffic camera data shows that a car 4 m long takes 1.2 seconds to

cross an intersection 16 m wide. The time taken is from the moment the car’s
headlights enter the intersection to the moment the tail-lights depart. Was the
car exceeding the speed limit of 60 km h–1?

— P r a c t i c e  q u e s t i o n s
The relative difficulty of these questions is indicated by the number of stars beside each
question number:  * = low; ** = medium; *** = high.

Review — applying principles and problem solving
*37 To help you rearrange equations and substitute numbers, do these simple 

calculations (Table 2.13):

Ta b l e  2 . 1 3

*38 The best time by an Australian in the 40 km marathon is that of Robert de
Castella, who ran the Boston Marathon in 1986 in 2 h 7 min 51 s. 
Calculate: (a) his average speed; (b) the time it would take Michael Johnson 
if he ran the distance at 10.15 m s–1.

*39 The fastest lap of the British Motorcycle Grand Prix at Donnington Park was in
1993 by Luca Cadalora on a 500 cc Yamaha in 1 min 34.716 s, averaging 
152.908 km/h. (a) How long is the track? (b) If the race was 30 laps and he
took 47 min 45.630 s, what was his average speed for the race?

49M o t i o n  i n  a  S t r a i g h t  L i n e

DISPLACEMENT TIME VELOCITY

(a) 300 m 6 s
(b) 150 km 4 h 30 min
(c) 30 s 340 m/s
(d) 3 h 15 min 220 km/h
(e) 300 m 15 m/s
(f) 3.5 × 106 km 65 km/h

Photo 2.5
Many calculator manufacturers -
including Texas Instruments and

Casio - make attachable data 
loggers. In this photo a TI-CBL2
computer based laboratory (data
logger) is connected to a TI-83

graphing calculator. The CBL/CBR
program shown on the displat 

provides the interface for this to
work. A huge range of probes are

available to connect to these
devices.
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*40 Australian fast bowler Brett Lee was electronically timed to deliver a cricket ball
at 157.4 km h–1 in the second test against South Africa in 2002. How many 
seconds would it take for the ball to travel the 20 m length of the cricket pitch?

*41 A person runs in a straight line 84 m south in 9.0 s and then 160 m north in
18.0 s. What is his (a) displacement; (b) average speed; (c) average velocity?

*42 A car travels on a straight road for 50 km at 30 km h–1. It then continues in the
same direction for another 20 km at 60 km/h. What is the average velocity of the
car during this trip?

*43 The graph in Figure 2.28 shows the displacement of a radio-controlled car being
driven in a straight line:
(a) What is its displacement after 3 s?
(b) Calculate how far it travelled in the 6 s.
(c) At what stage was its velocity the greatest?
(d) When was it stationary?
(e) When was its velocity constant but not zero?
(f) What was its velocity at 5 s?

*44 Practise applying the acceleration formula by completing Table 2.14. Do not
write in this book.

Ta b l e  2 . 1 4

*45 A car with an initial velocity of 3.0 m s–1 has a velocity of 34 m s–1 after 3.0 s.
Calculate (a) its acceleration; (b) its average velocity; (c) how far it moved in
its third second of motion; (d) its speed after travelling 20 m.

*46 The graph in Figure 2.29 shows the motion of a girl on rollerblades as a function
of time.
(a) Calculate her displacement after 50 seconds.
(b) Calculate the distance she travelled in the minute.
(c) At what stage was her acceleration the greatest?
(d) When was she stationary?
(e) When was her velocity constant but not zero?

*47 Table 2.15 will give you practice in selecting equations of motion and substituting
values into them. Complete the table but do not write in this book.

Ta b l e  2 . 1 5
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v (m s–1) u (m s–1) t (s) a (m s–2)

(a) 100 40 3.5 ?
(b) 60 130 0.85 ?
(c) 250 ? 1.5 4.0
(d) 16.7 27.0 ? –1.5
(e) 0.55 0.15 ? 60
(f) ? 0 1.2 × 10–3 2.0

(a) 0 3 1.5
(b) 200 0 1.4
(c) 20 65 2.6
(d) 315 7.5 2.5
(e) 400 25 – 0.4
(f) 30 8.7 2.3
(g) 1550 80 800

QUESTION s u v a t
(m) (m s–1) (m s–1) (m s–2) (s)
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Figure 2.28
For question 43.
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Figure 2.29
For question 46.

Ch02-Walding 4th  25/8/04  10:14 AM  Page 50



**48 A cyclist is travelling at a constant 10 m s–1 when he begins to coast up a hill.
Assuming that he decelerates uniformly at 1.8 m s–2, calculate (a) how far he
will travel before coming to rest; (b) how long this will take.

**49 A pedestrian steps on to the road while an approaching car is travelling at 
30 km h–1. If the driver’s reaction time is 0.3 s and the braking deceleration is
4.5 m s–1, calculate (a) the stopping distance; (b) the stopping time.

**50 A car travelling at 100 km h–1 takes 65 m to stop after the driver sees a child run
on to the road chasing a ball. If the driver’s reaction time is 0.25 s, calculate the
deceleration of the car.

*51 In the 1993 British Motorcycle Grand Prix, Kevin Schwantes was eliminated after a
crash. Australian Motorcycle News described the crash: ‘Schwantes was the first to
crash after asking too much of a cold rear tyre. He hit the grass at 290 km/h and
slid to a halt in a set of sand traps 50 m down the track.’ Calculate Schwantes’
deceleration in this accident.

*52 The results of experiments published in 1966 show that nerve impulses can 
travel at 288 km/h in the human body. How many seconds would elapse if they
travelled at this speed from your toe to your brain (say 170 cm)? Assume the
speed is constant.

*53 The Lee Enfield Rifle (.303) was used by Commonwealth Forces during the
Second World War. Its projectiles had a muzzle velocity of 745 m s–1 and came 
to rest at a range of 700 m. Calculate (a) the deceleration (assumed uniform);
(b) the time of flight.

*54 Suppose a rocketship in deep space moves with a constant acceleration of 
9.8 m s–2, which will give the illusion of normal gravity during the flight. 
(a) If it starts from rest, what time will it take to reach a speed one-tenth that
of the speed of light (3 × 108 m s–1)? (b) How far will it travel in doing so?

**55 Consider a case where air resistance is taken into account. A tennis ball was
dropped from a 120 m high cliff and accelerated uniformly to a terminal speed 
of 20 m s–1 after 5 s. From then on to the ground it travelled at this speed.
Calculate (a) its acceleration over the first 5 s; (b) how far it travelled before 
it reached terminal speed; (c) its total time of flight; (d) its impact velocity; 
(e) its average velocity for the entire flight.

**56 Consider cases where an object is thrown vertically into the air. In these cases
upward is still the positive direction. ‘Time of flight’ means the total time from
launch to impact. Complete Table 2.16:

Ta b l e  2 . 1 6

**57 The single cable supporting a construction elevator breaks when the elevator
passes the sixth floor (25 m) on its way up while at a speed of 3.0 m s–1. 
(a) Calculate velocity on impact. (b) How much time will elapse before the 
elevator strikes the ground?

**58 In an experiment to investigate the relationship between time, displacement,
velocity and acceleration, a trolley was allowed to run down an inclined plane
with its motion being recorded by a ticker timer. Figure 2.30 shows a 1 m length
of the tape cut into five continuous segments so that it can be displayed in this
textbook. Note the time interval between successive dots is 0.02 second.
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(a) 10
(b) 100
(c) 5.5

INITIAL VELOCITY TIME OF FLIGHT MAXIMUM
u (m/s) t (s) HEIGHT s (m)
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Part A Displacement
(a) Every fifth dot was marked alphabetically. Check that this is correct.
(b) Calculate the time elapsed for each lettered dot and measure the 
displacement of each dot from the start. Add this to the data table (Table 2.17).
Do not write in this book. Redraw the data tables or photocopy them.

Ta b l e  2 . 1 7

(c) Plot a graph of t (x-axis) versus s (y-axis).
(d) What is the displacement of the last lettered dot (I)?

Part B Velocity
(e) Draw tangents at each of the lettered dots C, E and G and calculate their
slope. Add to Table 2.18 in the second row (‘slope’).

Ta b l e  2 . 1 8

(f) Calculate the velocity of each lettered dot by measuring the distance
between dots either side of each lettered dot and dividing by the time interval
(2 × 0.02 s). Add these data to Table 2.19. in the v row.
(g) How does the average velocity for each lettered dot compare with the
instantaneous velocity as calculated from the slope of the s–t graph in 
Question (c)?
(h) For the average velocity as calculated in question (g) plot velocity vs time
(x-axis) and draw a line of best fit.
(i) Determine the area under the graph up to the last lettered dot (I). How does
this compare with the measured displacement of dot I?

Part C Acceleration
(j) Calculate acceleration by measuring the slope of the graph of v–t.
(k) Calculate acceleration from the tape for dots C, E and G by subtracting the
velocity five dots before from the velocity five dots after and dividing by the
time interval over the ten dots. For example, to calculate the velocity at C, 
subtract the velocity at B from the velocity at D and divide by ten dot intervals
of time. Add this to Table 2.19.
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CA B

E

G

H

I

D

F

Figure 2.30
A ticker timer tape cut into five
segments to fit the page.

t (seconds) 0 0.1 0.2 0.3
s (cm)

DOT A B C D E F G H

t (seconds) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Slope (cm/s)
v (cm/s) 0

DOT A B C D E F G H
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(l) Plot a graph of acceleration vs time and draw a line of best fit.
(m)Calculate the average acceleration by averaging the acceleration at the 

lettered dots C, E and G.
(n) How does the value of average acceleration compare with the slope of the 

v–t graph?
Note: if you have access to a computer and spreadsheet, you may like to set up
the spreadsheet to make the various calculations.

**59 Table 2.20 is taken from a Wheels Magazine comparison of some popular
four-cylinder cars.

Ta b l e  2 . 2 0

(a) Which car has the best overall acceleration? Justify your choice.
(b) Which, if any, of the cars reaches its maximum speed in less than 400 m?
(c) Does a car’s ability to accelerate get progressively less at higher speeds?

Justify your answer.
(d) Calculate the distance over which the 40–70 km h–1 acceleration test would

have occurred for the Toyota.
(e) List five other criteria that would be important to include in a car 

comparison.
(f) ‘The greater the engine power, the greater the acceleration.’ Comment 

critically on this claim with reference to the above data.
(g) ‘The greater the engine capacity the greater the acceleration.’ Comment 

critically.
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t (seconds) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
v1 (cm s–1)
v2 (cm s–1)
a (cm s–2)

DOT A B C D E F G H I

Engine capacity (litres) 1.991 2.212 2.164
Engine — Max. power (kW) 85 100 95
Top speed (km/h):

• First gear 63 62 63

• Second gear 113 118 113

• Third gear 174 175 176

• Fourth gear 190 195 185
Acceleration (seconds):

• 0–60 km/h 5.7 5.2 5.8

• 0–80 km/h 9.3 8.3 9.3

• 0–100 km/h 13.6 12.0 13.6

• 0–120 km/h 20.1 17.5 20.1
Standing 400 m (km/h): 19.1 (117) 18.3 (123) 19.1 (118)

• 40–70 km/h 4.1 3.5 3.9

• 60–90 km/h 5.5 4.9 5.5

• 80–100 km/h 7.2 6.0 7.1

• 100–130 km/h 10.6 9.0 11.0

MAZDA 626 SUBARU LIBERTY TOYOTA CAMRY
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Extension — complex, challenging and novel
***60 Chris beats Sandy by 10 m in a 100 m sprint. Chris, wanting to give Sandy an

equal chance, agrees to race her again but to begin 10 m behind the starting
line. Does this really give Sandy an equal chance?

***61 The General Dynamics F-111 jet has been in service with the RAAF since 1963.
Its maximum speed above 50 000 feet is 825 m s–1 (Mach 2.5) but this drops to
396 m s–1 (Mach 1.2) at sea level because of air resistance. Calculate the 
deceleration as an F-111 drops and decreases speed as stated in 30 s. 
Note: Mach numbers are the number of times the speed is greater than the 
speed of sound at that place (330 m s–1).

***62 Two bus stops are 1200 m apart. A bus accelerates at 0.95 m s–2 from rest
through the first quarter of the distance and then travels at constant speed for
the next two quarters and decelerates to rest over the final quarter. 
(a) What was the maximum speed? (b) What was the total time taken for the
journey? (c) Draw a v–t graph of the journey.

***63 A basketball player, standing near the basket to grab a rebound, jumps 76.0 cm
vertically. On his way up, how much time does he spend (a) in the bottom 15 cm
of his jump; (b) in the top 15 cm of his jump? Does this help to explain why
such players seem to hang in the air at the tops of their jumps?

***64 A juggler tosses balls vertically into the air. How much higher must they be
tossed if they are to spend twice as much time in the air?

***65 A stone is dropped off a bridge 50 m above the water. Exactly 1 s later another
stone is thrown down and both stones strike the water together. (a) What must
the initial speed of the second stone have been? (b) Plot a v–t graph of both
stones on the one graph.

***66 Who would have the more thrilling ride: Kitty O’Neil in her dragster, which
reached 628 km/h in 3.72 s or Eli Beeding who reached 116 km/h in 0.04 s on 
a rocket sled? Justify your choice by commenting on what determines how
thrilling a ride might be — the speed, the time, the acceleration or something
else.

***67 A person standing on the edge of a cliff throws a ball straight up with speed ‘u’,
allowing it to crash on to the rocks below. He later throws a ball with the same
speed ‘u’ straight down. Which ball has the higher speed when it hits the rocks?
Neglect air resistance.

***68 A ball is dropped down an elevator shaft and then 1 s later a second ball is
dropped. (a) How does the distance between the two balls vary as time passes?
(b) How does the ratio v1 : v2 vary with time?

***69 The Australia vs USA Nitro-Harley Challenge is the world’s richest motorcycle
drag race meeting. One of the most successful riders, Phil Hill (USA), is 61 years
old. With a 103 cubic inch nitromethane injected 350 horsepower engine he can
cover the standing quarter mile (400 m) in 7.22 seconds with a final speed of
305 km h–1. The acceleration required to cover 400 m from a standing start in
7.22 s is more than the acceleration needed to reach 305 km h–1 from a standing
start in the same time. How can you explain this apparent discrepancy in the
calculations?

***70 A rule-of-thumb in motorcycle drag racing is that ‘sixty pounds is three-tenths
of a second’. This is meant to show how a rider’s weight affects the time to cover
400 m from a standing start. Australian national record holder Bill Curry has a
best time of 6.92 s. Calculate how much his average acceleration would be if he
was 20 kg heavier. 
Note: 1 kg equals 2.2 pounds.
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***71 The speed of non-land-based vehicles such as ships and planes is usually 
measured in ‘knots’. A knot is one nautical mile (6080 feet) per hour. To measure
the speed of a ship, a line with knots at set intervals was attached to a log that
was thrown overboard from the stern of a ship. As the log drifted away from 
the ship a sailor would count how many knots passed through his fingers while
the sandglass emptied. Usually the ‘log line’ had knots every 100 feet and the 
sandglass emptied in 1 minute. (a) Prove that a speed of 30 knots equals 
30 nautical miles per hour. (b) How many km h–1 is 30 knots if 1 foot equals
0.305 metres?

***72 If you have access to a computer, set up a spreadsheet to compute the distance
an object falls, as a function of time of falling, near the surface of the Earth 
(g = 9.8 m s–2); our Moon (g = 1.6 m s–2); Mars (g = 3.8 m s–2) and the Sun 
(g = 270 m s–2). Compute the distance of fall for each fifth of a second from 
0 to 2 seconds.

***73 The Incredible Tale of the 37-year Puzzle. This puzzle remained unsolved for 
37 years until Popular Science Magazine published it again in October 1976. 
Two thousand responses were sent in and five different solutions appeared. 
The problem (Figure 2.31): A man always drives at the same speed. He makes it
from A direct to C in 30 minutes; from A through B to C in 35 minutes; and 
from A through D to C in 40 minutes. How fast does he drive?

***74 Galileo’s first attempt at producing a law of falling bodies was limited by his 
lack of mathematical means of describing continuously varying motion. In a 
letter to a friend Paolo Scarpi in 1604 he wrote: ‘Spaces traversed in natural
motion are in squared proportion of the times, and consequently the spaces 
traversed in equal times are as the odd numbers beginning with unity. And the
principal in this, that the naturally moving body increases its velocity in the
proportion that it is distant from the origin of the motion.’ Can you convert this
to mathematical statements and then comment on whether Galileo was correct
with these early theories?

***75 The Sukhoi Su-29 is a Russian built two-seat aerobatic competition aircraft
becoming popular in Australian competitions. If one was flying at its cruising
speed of 160 knots (298 km/h) and an altitude of 1000 m and suddenly 
encountered terrain sloping upward at 4.3°, an amount difficult to detect, 
how much time would the pilot have to make a correction if he is to avoid 
flying into the ground?

***76 An article in the newspaper quoting a safety expert said that: ‘An unrestrained
child in a 50 km/h car crash suffered the same effects as being dropped on to
concrete from a building’s second floor. It said some parents still held the belief
that merely placing children in the back seat would protect them in a crash.’
Confirm or refute these comments made by the paper, making whatever 
approximations are required.

***77 A car has an oil leak from the sump and a drop falls every 2 seconds. Draw a 
diagram of how the spots would appear on a 64 m driveway as the car accelerates
up it from rest at 2 m s–2. Assume the first drop falls at the instant the car
moves.
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Figure 2.31
The 37-year puzzle.

T E S T  Y O U R  U N D E R S TA N D I N G

(Answer true or false)
• Two objects side by side must

have the same speed.
• Acceleration is in the same

direction as velocity.
• Velocity is a force.

• Heavier objects fall just a bit
faster than light ones.

• If velocity is zero, 
acceleration is zero.

• In the absence of gravity all
things move with equal ease.

• At the top of its flight a 
vertically thrown object has 

zero acceleration.

✔
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